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The lagrangian picture of fluid motion
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This paper is introductory to the Theme Issue of Philosophical Transactions, which is
devoted to the lagrangian description of fluid motions. In much of the literature of
the last few decades attention has been focused especially on the eulerian description,
in which the time-dependent flow is observed at a given position. This is an
important aspect of many experiments, in which velocity and pressure fields are
measured at some point. On the other hand, many flow visualizations direct the
attention of the observer to the motions of individual particles, and to the
phenomena associated with such observations. The lagrangian picture is appropriate
for such experiments; new and different phenomena can be seen and understood in
a rather simpler manner than in the eulerian description. The basic ideas of the
lagrangian picture, and some applications, are therefore laid out in this paper.
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We give here the lagrangian analytical framework for the discussion of problems in
fluid motion, in which we quite naturally focus attention on the motion of individual
particles of fluid, just as we would do in newtonian dynamics of a system of particles.
An important force field for us is the pressure gradient, which is associated with
driving the motion and which therefore appears in the equation of motion for an
individual particle.

In truth, of course, the existence of a pressure field represents the fact that we are
dealing with an assembly of particles, and the very nature of this suggests the
propriety of a field description of the flow of a vector field (velocity and pressure) at
a point, the so-called eulerian description. There is a simple connection between the
two descriptions, namely through the calculus: the acceleration of an individual
particle is related through the chain rule to the acceleration of the assembly of
particles which flow through a point.

In either description, lagrangian or eulerian, mass must be conserved in a material
volume, and this yields the continuity condition, which is an important and
significant equation. In the lagrangian case it can be considered as constraining the
equation of motion, the balance between the particle acceleration and the pressure
gradient. Thus we may regard likely candidates for the pressure field as being
constrained implicitly by the continuity condition, even though the latter is
explicitly representative of velocity and density.

It is incumbent upon us to refer to the important role played by vorticity, the
property representative of spin or angular velocity of fluid particles. We can conceive
of vorticity playing a central role since, in the eulerian description, we see the
vorticity as implying the structure of the velocity field through the Biot—Savart law.
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264 J. T. Stuart and M. Tabor

In the lagrangian picture, on the other hand, we have an explicit formula for the
vorticity in terms of the initial vorticity and the rate of strain between neighbouring
fluid particles; this is Cauchy’s formula, and in some circumstances it has been seen
to enable the calculation of explicit solutions of considerable interest. In either
formulation, we see the pressure and the vorticity, subject to the constraint of the
continuity condition, as playing vital roles in the evolution of fluid motions.

We need to ask: What are the particular problems for which the lagrangian
description is especially appropriate ? For what problems are signal benefits to be
gained from the lagrangian description ! To a considerable degree answers to these
questions are given by the articles in this Theme Issue of Philosophical Transactions.

One subject of great topicality is that of chaos associated with individual particle
motions, for which one might use the description ‘kinematic chaos’, a term
appropriate for a situation in which the dynamical (eulerian) velocity field is
deterministic and non-chaotic. This subject is pursued later by H. Aref, who argues
in favour of the term ‘chaotic advection’ in preference to an earlier usage of
‘lagrangian turbulence’. A crucial point that we can make in favour of ‘kinematic
chaos’ is that the process is not a dynamical one, but solely one of kinematics. In §3
of this paper we exploit the lagrangian frame to compare and contrast a variety of
kinematical and dynamical issues and discuss the interplay (if any) between
kinematical chaos and eulerian turbulence.

It would be misleading, however, to suppose that the use of a lagrangian
description is concerned only with kinematic properties, or indeed exclusively with
chaos. Although the relation between the lagrangian and eulerian descriptions is a
kinematic one, the lagrangian form necessarily contains all the appropriate
dynamical information. This feature is embodied firmly in the articles of this theme
issue.

The description of the motion of ‘foreign’ particles in a fluid medium finds a
natural place in the lagrangian formation, as does the associated concept of mixing
processes and the stirring of a passive scalar contaminant. Thus M. R. Maxey’s
article addresses questions of particle transport and sedimentation, both chaotic and
otherwise.

The idea of the straining of neighbouring fluid elements also is sensibly described
in the lagrangian framework, and this is important for turbulent dispersion as has
been known at least since G.I. Taylor’s paper of 1921. The assumption of the
‘persistence of strain’ is one that has been commonly used for many years, but
S. B. Pope argues later that direct numerical studies of turbulence militate against
this assumption.

The Euler equations of inviscid fluid motion continue to be a subject of great
mathematical speculation, not least as to whether the possibility exists for a
singularity to appear in a solution within a finite time. Examples are known of this
phenomenon for geometries that are semi-infinite, but questions of this type for a
bounded domain or of solutions with bounded energy remain open. This topic is
addressed briefly later in this article, but in more detail by H. K. Moffatt.

The Navier—Stokes problem may also have associated singular structures,
especially amenable to a lagrangian description, and not unrelated to the work
briefly mentioned later in this article. Unsteady boundary-layer separation of
viscous flows, in which a singularity can occur in the outer regions of the boundary
layer is a subject to be discussed here and is addressed by S.J.Cowley, L. Van
Dommelen and S. T. Lam.

Phil. Trans. R. Soc. Lond. A (1990)
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The lagrangian picture of fluid motion 265

Singularities of another kind are those associated with material interfaces between
two different fluids, the very nature of this problem suggesting the idea of the
utilization of the lagrangian description. Some mathematical results of great interest
are given by P. Constantin and L. P. Kadanoff.

Numerical studies of flows involving free surfaces (or material interfaces) form a
significant area of study by the techniques of computational fluid dynamics,
involving vortex elements and the lagrangian description. Progress in this field of
study is described by G. R. Baker.

2. Mathematical basis

We consider a fluid that is composed of particles, a typical member of which is
defined by the three parameters ¢, iy, ¥ (or by a,,¢ = 1,2,3). These three members
will be taken to represent the three coordinates of the particle at the initial time, say
t = 0. Thus the current position (x;,j = 1,2,3) of a typical particle may be written

vy =X(a,t), x,=Y(a,t), x3=Za;!). (2.1)
The equation of motion may be written
p 0%, /0t = —p/x;, (2.2)

where we consider the pressure (p) and density (p) to be functions of x; and ¢. If, as
is more often convenient in the lagrangian description, we regard p and p as functions
of a; rather than x; (Lamb 1932, p. 13) we obtain

p (0*x;/0t?) Ox;/0a, = —Op/0a,. (2.3)

(We shall return to a discussion of the relative merits of (2.2) and (2.3) as appropriate
dynamical statements.)
The velocity of the particle is defined by

u, = 0x, /0t =X,, u,=20x,/0t=1Y, wu,=0x,/0t=2, (2.4)
where differentiations are performed with a, (= ¢, ¥, ) kept fixed. The vorticity
Wy, t) = €y Oty /02y, (2.5)
is given by Cauchy’s formula (Lamb 1932, p. 205), namely
ptwy(ag, t) = pyt wg(ay, 0)0x;/0ay, (2.6)

where p, is the initial density of the particle (¢t = 0), and w(a;, 0) is its initial vorticity.
Formulae (2.4), (2.5) and (2.6) comprise the essential kinematical statements of the

problem.
Finally, we have the equation of state, which we assume to be
» = flp), (2.7)
and the equation of continuity, namely
pJ = po, (2.8)
where J = g%: = 2(—({;:—;—% (2.9)

Phil. Trans. R. Soc. Lond. A (1990)
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is the determinant of the matrix,
ow | X K X
I=7’E Y, Y, Y| (2.10)

Initial conditions require that
X=¢, Y=y, Z=yx at t=0. (2.11)

How are we to proceed with the solution of equations (2.1)—(2.11)? What are the
basic principles to be used? Whether we use the eulerian or the lagrangian
description, we are aware that the vorticity and the pressure play significant roles in
flow development.

By utilization of (2.1), (2.4), (2.5) and (2.6) together with the continuity condition
(2.8), (2.9) some detailed analysis, which extends that of Stuart (1990), can be used
to show that

F.,=0, k=1,2 3, (2.12)
where

Fi=22y—2,2,+Y, Y, — Y, Y+ X X, — X, X, —Z 15+ Yo, (2.13)
Fy=2y20,—2, 24+ Y, Y, =Y, Yy + Xy X, — X Xy — X0+ Zyy, (2.14)
Fy=2,2,—2,2,,+Y, Y, — Y, ¥, +X, X, — X, Xy — Y0+ X 40, (2.15)
Formula (2.12) is essentially Cauchy’s vorticity formula, and suffixes denote
derivatives with respect to ¢, ¥, x, t, whereas the suffix 0 indicates the initial value

of the function. Involved in the above derivation is the condition, associated with
(2.11), that the initial vorticity is

xt

W10 = Zgro— Yoo 020 = Xjpo—Zypor 030 = Yyo—X g0 (2.16)

The scheme followed by Stuart (1988, 1990) derives particular solutions of
(2.12)—(2.15) in association with the continuity condition (2.8), (2.9), with the
pressure following from (2.3). In those papers, therefore, the pressure has an explicit
dependence on a, (= ¢,y x) and ¢ (2.3).

For later reference we note

'g;lt = Z)(Zl//tt '-‘Zw Z)(tt + YX Yl//tt - Y]/, ),X“'t +XXXE[’” —XibXXtt’ (2‘17)

with corresponding formulae for &%,, and %,,.

An alternative approach, which is based on (2.2) with p regarded as depending on
x; (=X,Y,Z) and ¢, has advantages both conceptually and technically. In view of
(2.7) we can define

DX, Y, Z, t)= fipﬁ (2.18)
and re-write (2.2) as

0%, /0t* = — 0/, (2.19)
or as Xy=—Dy, YV, =—@,, Z,=—0, (2.20)

Here @ plays the role of a potential function for the motion of a particle in three
space dimensions X, Y, Z. Appropriate initial conditions are (2.11) together with

Xy =uy(@, ¥, X)X, =g0(P, ¥, X),  Zy = ugo(, ¥, X) (2.21)
Phil. Trans. R. Soc. Lond. A (1990)
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for the initial velocity field. If we substitute formulae (2.20) into (2.17) and its two
companions we find
Fu=Fy=F, =0. (2.22)

Thus, as derived by Stuart (1990) rather obliquely, (2.20) may be regarded as solving
Cauchy’s vorticity relation (2.12)—(2.15). This is the advantage in the utilization of
(2.20) rather than (2.3).

It seems therefore that the apparatus of lagrangian or hamiltonian mechanics is
available for the study of our problem based on (2.20). The ‘energy’

T+® =X+ Y+ 2+ DX, ¥, Z, 1) (2.23)

is not in general conserved because @ and therefore L = 7'— @ may depend explicitly
on t. (The ‘steady’ case in the eulerian sense, in which @ depends on X, ¥, Z but not
on t explicitly, yields naturally Bernoulli’s theorem, namely that (2.23) is constant on
a streamline ; in the present sense this means that (2.23) is a function of ¢, ¥, y and
varies therefore from particle to particle in general, but is the same for particles on
the same streamline.)

Implicit in the solution of (2.20) is the fact that the solution will depend in general
of ¢,¥,x because of (2.11), (2.21). This dependence is associated with the
overwhelming constraint of continuity (2.8), (2.9). This constraint involves ¢ only as
a parameter, but derivatives with respect to the particle parameters ¢, yr, y are
significant, as can be seen quite easily (2.8), (2.9).

Thus, although (2.20) subject to (2.11) and (2.21) defines apparently a standard
dynamical problem associated with time dependence, a lagrangian or hamiltonian
problem that is, the potential function @(X, Y, Z, t), which is associated with pressure
and density, is ‘unknown’; rather, it is more accurate to say, @ is prescribed by the
relation with neighbouring particles both near and far through the continuity
condition, with p depending implicitly on @ through the inversion of (2.18). It is the
relation with the continuity condition that renders the problem non-standard.

The work of Stuart (1990) can be re-formulated from our present point of view by
setting @ as quadratic in x; = Z. The earlier paper (Stuart 1988) has @ quadratic in
both z, =X and x; =Z. These papers are thus concerned with structures of
stagnation type. The simplicity of the present approach can be seen as follows.

If we assume that

& =—142X>—1C°Z*+ P(Y,1), (2.24)
where 4 and C can be functions of ¢, then

X, —A*X =0, (2.25)
Z,—C*Z =0, (2.26)
Y,+¥,=0. (2.27)

With 4 = 0 as a special case, and applying conditions (2.11), (2.21), we find
X = 1+t u(y)) (2.28)
Z = x(cosh Ct+ w,(y) sinh Ct). (2.29)

A simple calculation shows that (2.12)—(2.15) are satisfied, as are formulae (2.22),
provided Y is a function of 3 and ¢ only.

For the incompressible case (p = p,) (2.8) and (2.9) yield a relation between ¥ and
¥ by a quadrature

[1+tuy ()] ¥, [cosh Ct +w, () sinh C1] = 1. (2.30)
Phil. Trans. R. Soc. Lond. A (1990)
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With uy(y) and w,y(yr) given as initial data, (2.30) can be evaluated as in Stuart (1988,
1990) and ¥ follows from (2.27).

The compressible case (2.7) and other aspects of the problem defined by (2.20),
(2.8), (2.9), (2.11), (2.21) will be discussed elsewhere. For the present we emphasize the
simple dynamical nature of problem (2.20), but subject to the formidable constraint
(2.8), (2.9).

3. Kinematical and dynamical issues

As we have discussed earlier, one currently popular aspect of the lagrangian picture
is kinematic chaos. The appeal is that, since very simple (deterministic) velocity
fields can generate chaotic particle trajectories, many of the concepts and tools of
dynamical systems theory can be used and hence play a useful role in describing real
physical problems. However, little is understood about the role or significance of
kinematic chaos in régimes where the velocity fields themselves start to fluctuate
chaotically on all (or many) temporal and spatial scales. Thus the effect of eulerian
‘turbulence’ on kinematic chaos and the converse issue of the influence of kinematic
chaos on eulerian turbulence appears to be a completely open question. Arnold (1965)
has suggested that in some circumstances chaotic streamlines may facilitate the
onset of eulerian turbulence. On the other hand, as will be discussed later, dynamical
systems intuition suggests that the latter may suppress the former. Some of the
dichotomy between kinematical and statistical considerations is illustrated by
considering the fundamental process of (nearby) particle separation. That nearby
particles should separate on average in a turbulent flow field has been a long-held
assumption; although a rigorous demonstration of this was given only relatively
recently by Cooke (1969, 1971) who showed that for isotropic turbulence (or locally
isotropic turbulence with a restriction on timescales (Monin & Yaglom 1975)) the
mean separation grows exponentially, namely In|l(7)|/{(0) = O for all 7 > 0, but that
it saturates in the limit 7—oco. It is important to consider the role of different
(eulerian) scales in the separation process. Separation is determined by the local
velocity gradients, the largest of which are associated with the smallest scales. Two
infinitesimally close particles will only separate significantly over regions in which
the straining field is well correlated, namely the Kolmogorov microscale in fully
developed turbulence. For particle separations larger than this, say in the inertial
range, this correlation is lost. (Indeed, little is known about the statistics of gradient
quantities in the lagrangian picture.) In this régime one can argue that at a
separation [, where [, <1 <[, and [, and [, denote the micro- and integral scales
respectively, the particles are primarily pushed further apart by the eddies of size I.
These larger eddies contain more energy with the result that as the process progresses
the separation becomes faster than the ballistic rate. A standard dimensional
analysis yields the famous Richardson law (/2)? x €57 where ¢ is the universal rate
of energy dissipation. The (presumed) loss of straining field correlation beyond the
smallest scales is an example of where a dynamical systems point of view of particle
separation, as embodied in the calculation of Lyapunov exponents, is different from
the statistical one; in the former context a precise correlation of the velocity
gradients and the orientation of the separation vector is assumed along the entire
system trajectory (particle path). If this correlation is lost these exponents (if they
can still be defined) might reasonably be expected to lessen; hence the intuition that
eulerian turbulence might suppress the extent of kinematic chaos.

Even at the smallest scales the actual rate of local (exponential) separation is far

Phil. Trans. R. Soc. Lond. A (1990)
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from obvious. For many years it was assumed that, at the smallest scales, the
straining field is ‘persistent’, that is the directions of the principal rates of strain
vary more slowly than the strain rates themselves. The consequence of this
assumption is that an infinitesimal line element has time to align itself with the
largest strain rate and be significantly stretched. Such a model leads to a local
separation rate proportional to the largest (mean) eigenvalue of the rate-of-strain
tensor (Batchelor & Townsend 1956). As will be discussed in the paper by S. B. Pope,
numerical evidence suggests that this persistence assumption is probably incorrect
with the consequence that the separation rate is reduced. Even so the precise
kinematics of alignment — a variety of effects involving the vorticity and the rotation
rates of the strain axes competing to move the line element in and out of
alignment — is still not well understood.

At the dynamical level, the comparison of scaling laws for lagrangian and eulerian
quantities raises other important issues. An illustration is provided by comparing the
relative behaviour of the frequency spectra of the velocity autocorrelation in the
lagrangian and eulerian frames. Here we consider the one-point two-time eulerian
quantity

O (1) = gl t)wy(x, t+7)) (3.1)
and the corresponding lagrangian quantity
O (1) = Lugla, ) uy(a, t+7)), (3.2)

where @ denotes a fluid particle label. In the theory of isotropic, homogeneous
turbulence the study of time correlations, as opposed to space correlations, has met
with only modest success. If one assumes a Kolmogorov cascade with the lowest
frequencies determined by the integral scales, i.e. w, = u,/l,, and the cut-off
frequency determined by the micro-scales, i.e. w, = u,/l,, it follows from simple
scaling arguments (if they exist for time correlations) that the frequency spectrum
(i.e. the Fourier transform of C(7)) of either correlation behaves as

P(w) = ew?, (3.3)

where ¢ is the (universal rate) of energy dissipation. In the eulerian frame, however,
one should allow for the possibility that the large-scale, energy containing, eddies
advect the smaller eddies (this is sometimes referred to as the ‘random Taylor’ or
‘sweeping’ hypothesis). At an intuitive level this effect can be estimated by
observing that the mean square advective term {(v-Vv)?) can be decomposed into
<w*) {(Vv)?) if the large and small scales become uncorrelated. A consequence of this
is that the highest frequency is effectively shifted to w = w,/l, and the spectrum
becomes (Tennekes 1975) . 2 s
P(w) = Sujw, (3.4)
which is non-universal since it now depends on some typical large scale velocity u,.
It seems reasonable to suggest that the sweeplng result, wf, corresponds to the
eulerian spectrum and the non-sweeping result, w2, corresponds to the lagrangian
spectrum since, by definition, there cannot be sweeping in the lagrangian frame. One
consequence of this is that the ratio of some lagranglan (micro) timescale to the
corresponding eulerian timescale scales as Rei. This would imply that along a
lagrangian orbit the velocity of a particle becomes ever better correlated relative to
its eulerian counterpart as a function of increasing Reynolds number. There is, as
yet, little evidence to verify this contention. (Some interesting numerical tests are
reviewed here by S. B. Pope.)

Phil. Trans. R. Soc. Lond. A (1990)


http://rsta.royalsocietypublishing.org/

/\
/ \\
e\
L A

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A\
a\

y 9

a

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

270 J. T. Stuart and M. Tabor

The notion of sweeping is not without controversy. Results of Yakhot et al. (1988),
using newly developed renormalization group (RNG) methods, suggests that there is,
in fact, no sweeping. In other words the large- and small-scale motions are not
decorrelated, with the result that the eulerian spectrum scales more like w 2. Chen &
Kraichnan (1989) have argued that such a result is not unexpected since correlations
between large and small scales are, in effect, built into the rNG approach. However,
a recent investigation by Nelkin & Tabor (1990), using simpler statistical ideas,
reinforces the validity of the sweeping hypothesis. Here the idea is to identify the
crucial advective term with the gradient of the Reynolds stress tensor, i.e. (v-V)v =
O(v,v4)/0x5. The fluctuation spectrum of the diagonal part is just the kinetic
energy spectrum K (k), where K = ¢? is the local kinetic energy spectrum per unit
mass. Standard Kolmogorov scaling arguments suggest that K, scales as k5.
However, it is easy to show that in this case the contribution to the mean square
acceleration (and hence the frequency spectrum) is consistent with the non-sweeping
result (3.3). By contrast, it is also easy to show that if &, scales as &3 one is led to
the sweeping result (3.4). Gratifyingly there is strong experimental evidence
supporting the latter form of E, (Van Atta & Wyngaard 1975). Although this
supports the sweeping hypothesis the above arguments ignore the scaling properties
of the off-diagonal elements of the Reynolds stress. Their precise role is open to
debate. One possibility is that, in view of the standard identity (v-Vv) =
3V (v?) —v X w, the off-diagonal terms might themselves be subject to the decorrelation
assumption, namely {V xw) = (»*>{w?), and hence make a similar contribution to
the mean square acceleration as the diagonal terms. Either way the above discussion
should illustrate the need for much further work on the relative behaviours of
eulerian and lagrangian quantities.

A quantity, that captures both kinematical and dynamical information, is the
second invariant of the velocity gradient tensor, namely

o? =1tr4? (3.5)

where (4);; = Ou,;/dz;. This quantity gives a simple and compact measure of the
straining and rotational components of the motion since it is easily shown that

o =3 (si—w)), (3.6)
i

where s; and w; are the eigenvalues of the rate-of-strain and vorticity tensors
respectively (i.e. the real and imaginary parts of the eigenvalues of 4). In two
dimensions ¢? is precisely the gaussian curvature of the stream function. Clearly if
0% < 0 the motion is rotation dominated, whereas for o2 > 0 the motion is strain
dominated. The behaviour of o® in the lagrangian frame is of considerable interest.
For a given initial particle position, a, the quantity o* = o%(a,t) characterizes the
‘strain history’ of the particle, which is of value in understanding the dynamics of
small deformable bodies, such as polymers, in flow fields (Dresselhaus & Tabor 1989).
By taking the time average of the real and imaginary parts of o itself (i.e. o = (tr 4)3)
along a lagrangian orbit the ratio

X= URe/UIm (3.7)

gives a simple measure of ‘stretch-fold’ ratio of particle orbits, i.e. the ratio of
overall strain dominated to vorticity dominated motion. Such a quantity is relevant
to quantifying mixing efficiency of passive scalars. The quantities o and y capture

Phil. Trans. R. Soc. Lond. A (1990)
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valuable kinematic information, which is distinet from that contained in the
traditional Lyapunov exponents which are, in effect, the long time average of the real
parts of the eigenvalues of 4 (4 is the ‘tangent map’ in the language of dynamical
systems) and hence contain no ‘rotational’ information. At the same time, ¢ is of
considerable fluid dynamical interest since, as is well known (in the eulerian context)

o2 =V-(u-Vu) = —V?p, (3.8)

where p is the pressure field (here we are setting the density, p, to unity). In many
numerical simulations this Poisson equation is used to compute the velocity field
from a given pressure field. Thus a study of the autocorrelation in the lagrangian
frame, namely

P(1) = {o?(a, t)c*a, t+T1)), (3.9)

can cast light on both the nature of pressure fluctuations and the kinematic details
of particle orbits.
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